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Abstract The recent technology of the single-nucleotide-

polymorphism (SNP) array makes it possible to genotype

millions of SNP markers on genome, which in turn requires

to develop fast and efficient method for fine-scale quanti-

tative trait loci (QTL) mapping. The single-marker asso-

ciation (SMA) is the simplest method for fine-scale QTL

mapping, but it usually shows many false-positive signals

and has low QTL-detection power. Compared with SMA,

the haplotype-based method of Meuwissen and Goddard

who assume QTL effect to be random and estimate vari-

ance components (VC) with identity-by-descent (IBD)

matrices that inferred from unknown historic population is

more powerful for fine-scale QTL mapping; furthermore,

their method also tends to show continuous QTL-detection

profile to diminish many false-positive signals. However,

as we know, the variance component estimation is usually

very time consuming and difficult to converge. Thus, an

extremely fast EMF (Expectation-Maximization algorithm

under Fixed effect model) is proposed in this research,

which assumes a biallelic QTL and uses an expectation-

maximization (EM) algorithm to solve model effects. The

results of simulation experiments showed that (1) EMF was

computationally much faster than VC method; (2) EMF

and VC performed similarly in QTL detection power and

parameter estimations, and both outperformed the paired-

marker analysis and SMA. However, the power of EMF

would be lower than that of VC if the QTL was multiallelic.

Introduction

Linkage analysis (LA) is an important tool for QTL mapping

in which the recombination events within the pedigree pro-

vides enough information for localizing QTL. However, LA

usually estimates QTL position within a large credible

interval (say 10–20 cM) and fails to further fine localize QTL

within the credible region even for high density markers,

since the recombination event is rarely observed within the

pedigree. Compared with LA, linkage disequilibrium (LD)

mapping could utilize the recombination information

beyond a pedigree and thus can narrow QTL position.

The single-marker analysis (SMA) is a simple method

for fine-scale QTL mapping (e.g. Chen and Abecasis 2007;

Wang et al. 2005), in which the marker can be directly used

for testing the existence of a QTL. However, SMA tends to

produce many spurious signals and show low QTL-detec-

tion power (Meuwissen and Goddard 2007). Compared

with SMA, the haplotype-based methods can not only

powerfully localize QTL, but also generate continue QTL-

detection profiles to diminish many false-positive signals

(Meuwissen and Goddard 2007). The haplotype-based

methods were originally developed for fine mapping dis-

ease gene loci (Kaplan et al. 1995; Terwilliger 1995; Xiong

and Guo 1997; McPeek and Strahs 1999; Morris 2006;

Minichiello and Durbin 2006; Wellcome Trust Case Con-

trol Consortium 2007; Marchini et al. 2007; Kimmel et al.

2008). Since the haplotype carrying causative mutation will

be decayed in the following generations due to recombi-

nation, the segment containing causative mutation will be

narrowed down within a small region, which provides

opportunities for fine localizing the causative mutation.

Fine-scale gene mapping for quantitative trait using

haplotypes was investigated by Meuwissen and Goddard

(2000, 2001), who used unknown historical recombination
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information to calculate identity-by-descent (IBD) proba-

bilities between two individual haplotypes; then construct

IBD matrix at putative QTL locus and estimate QTL variance

via restricted maximum likelihood method (REML, Patter-

son and Thompson 1971). Recently, several researchers have

applied the Meuwissen and Goddard’s method to search QTL

for domestic animals (e.g. Druet et al. 2008; Schnabel et al.

2005). However, it is well known that the variance compo-

nent estimation is usually computationally intensive and

difficult to converge. For convenience, the algorithm has been

built into the software GridQTL (Hernández-Sánchez et al.

2009) which distributes the analysis in parallel over a large

public grid of computers, and thus could enhance computa-

tional speed dramatically.

Another strategy for fine-scale QTL mapping was pro-

posed by Pérez-Enciso (2003) who assumed a biallelic

QTL and estimated QTL substitution effect rather than

QTL variance with a Markov Chain Monte Carlo (MCMC)

algorithm. His method focuses on fine mapping along with

haplotyping in a unified Bayesian framework. However, his

method is still unsuitable for genome-wide QTL mapping

due to the computational burden of the MCMC algorithm.

In this study, a fast expectation-maximization (EM)

algorithm (Dempster et al. 1977) called EMF is developed,

which assumes a biallelic QTL and uses EM algorithm to

estimate QTL parameters. Since EMF avoids the IBD-

matrices construction and REML estimation, much com-

putational time can be saved. The efficiency of the method

is illustrated with substantial simulation experiments.

Method

Model

Let y be an n 9 1 phenotypic vector,

y ¼ Xbþ wbþ e ð1Þ

where b is a vector of covariate effects and X is an

incidence matrix; b is QTL additive effect and w ¼
w1; . . .; wi; . . .; wn½ �T is an n 9 1 vector of QTL genotype,

where n is the number of phenotypic observations; e is the

vector of random error, which follows normal distribution,

e�Nð0; Ir2
eÞ, where I is an n 9 n identity matrix. The

mutant and wild alleles are denoted by M and m, respec-

tively. If the QTL allele on a haplotype of individual i is

IBD to the original mutant allele on ancestral haplotype, the

QTL allele is mutant type and denoted by M; otherwise, the

QTL allele is wild type and denoted by m. By this definition,

the QTL of individual i has three kinds of genotype, MM,

Mm and mm, which are indicated by, wi = 2, wi = 1 and

wi = 0, respectively. The QTL dominant effect is assumed

absent, but also can be easily included in model (1).

Inferring QTL-genotypic probability

EMF needs to calculate pP
i (pM

i ), the probabilities that the

QTL allele on paternal (maternal) haplotype of individual i

is IBD to the original mutant QTL allele M arose T gen-

erations ago. In this research, the method of Meuwissen

and Goddard (2001) for calculating IBD matrix between

unrelated individuals is modified to infer pP
i and pM

i . For

clear presentation, the inference of pP
i and pM

i is illustrated

using only flanking markers, and it also can be adapted for

the multi-marker situation. Given ancestral and flanking-

marker haplotypes of individual i, pP
i and pM

i can be

obtained according to Bayesian rule (Meuwissen and

Goddard 2001),

p IBDjSj; Sj

� �

¼ pðSj; Sjþ1jIBDÞpðIBDÞ
pðSj; Sjþ1jIBDÞpðIBDÞþpðSj; Sjþ1jnonIBDÞpðnonIBDÞ ;

ð2Þ

where Sj is the indicator of the identity-by-state (IBS)

status between individual and ancestral haplotype for jth

marker, which equals to 1 or 0 indicating the IBS or

nonIBS status of the two haplotypes; p(IBS) is the prior

probability that the QTL allele is IBD to the QTL

mutation M arose T generation ago. The details of the

calculation of Eq. (2) are described in ‘‘Appendix 1’’,

which is the same as the calculation of Eq. (2) in

Meuwissen and Goddard (2001) except for f(c) and aj.

Assuming that the QTL loci is in Hardy–Weinberg

equilibrium, the probability of the three QTL genotypes

of individual i can be calculated as Pi2 ¼ pP
i p

M
i for MM,

Pi1 ¼ ð1� pP
i ÞpM

i þ pP
i ð1� pM

i Þ for Mm(mM), and Pi0 ¼
ð1� pP

i Þð1� pM
i Þ for mm.

Maximum likelihood estimate via EM algorithm

Reconstruction of ancestral haplotype and estimation

of QTL position

The possible QTL position is assumed to locate at the

middle of each marker interval, and thus one should only

scan the middle points of each marker interval to search

QTL. The QTL position k and the ancestral haplotype

carrying QTL mutation M, hanc, can be viewed as fixed

parameters. Once one putative QTL is tested, all possible

ancestral haplotypes should be tried for finding the most

possible ancestral haplotype. For example, if only flanking

markers is used and each has two alleles, a total of 4

(2 9 2) possible ancestral halpotypes should be tried.

Then, the ancestral haplotype that generates the maximum

log-likelihood ratio (LR) is the maximum likelihood esti-

mate of ancestral haplotype at this position. Scanning all
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QTL positions along genome, QTL position also can be

estimated at the maximum LR score.

Estimation of model effect

Given the putative QTL position k, one possible ancestral

haplotype hanc, the observable phenotypic values y and

individual haplotypes H, model effects h ¼ ðb; b; r2
eÞ

T
can

be estimated via the EM algorithm. Assuming individuals

investigated are unrelated (the assumption can be relaxed

and will be discussed later), the likelihood function can be

expressed as

Lðhjy; H; k; hancÞ ¼
Yn

i¼1

X2

k¼0

Pikf ðyijwi ¼ k; �Þ
 !

; ð4Þ

where f ðyijwi¼k;�Þ/1=re �expð�ðyi�Xib�wibÞ2=2re
2Þ;

fork¼0; 1and2; is the likelihood conditional on three

genotypes mm, Mm and MM, respectively. The parameters

can be estimated via the EM algorithm (Dempster et al.

1977; Lander and Botstein 1989). The solutions can be

expresses as

b̂ ¼ ðy� E wjy; �Þbð ÞT y� Eðwjy; �Þbð Þ=n; ð5Þ

b̂ ¼ EðwT wjy; �
� ��1

EðwT jy; �Þðy� XbÞ; ð6Þ

r̂2
e ¼

1

n
y� Xb� Eðwjy; �Þbð ÞT y� Xb� Eðwjy; �Þbð Þ:

ð7Þ

In these equations, Eðw y;j �Þ ¼ Eðw1 y1;j �Þ Eðw2 y2;j �Þ � � �½
Eðwn yn;j �Þ�T , EðwT y;j �Þ ¼ Eðw1 y1;j �Þ Eðw2 y2;j �Þ � � �Eðwn½
yn;j �Þ�, and EðwTw y;j �Þ ¼

Pn
i¼1 Eðw2

i yi;j �Þ, where Eðwi

yij ; �Þ ¼ 2P�i2 þ P�i1 and Eðw2
i yij ; �Þ ¼ 4P2�

i2 þ P2�
i1 , where

P�ik is the posterior probability of QTL genotype for

k = 2 (MM), 1 (Mm and mM) and 0 (mm), respectively.

According to Bayesian rule, P�ik can be expressed as

P�ik ¼
Pikf ðyi wi ¼ kj ; �Þ

P2
k0¼0 Pik0 f ðyi wi ¼ k0; �j Þ

: ð8Þ

These estimates can be found by iteration of the above

equations via the EM algorithm. In each iteration, the

algorithm consists of one E-step, Eq. (8), and three M-steps,

Eqs. (5–7). The process is repeated until convergence. A

statistical test for H0: b = 0 is carried out by LR ¼
�2 logðLfull=LreduceÞð Þ, where logðLfullÞ and logðLreduceÞ are

the likelihoods under full model and reduced model

(b = 0), respectively.

Estimation of QTL variance

Let r2
w be the estimate of the variance of QTL genotype

wif gn
i¼1, and then the estimate of QTL variance can be

expressed as r2
q ¼ b2r2

w. Since wif gn
i¼1 are unobservable,

r2
w cannot be estimated directly. In practice, one can

approximately substitute wif gn
i¼1 with their posterior

expectation Eðwi yi;j �Þf gn
i¼1, and then r2

q can be estimated

with

r2
q ¼ b2

Xn

i¼1
Eðwi yi;j �Þð Þ2 �

Xn

i¼1
Eðwi yi;j �Þ

� �2

=n

� �
=

ðn� 1Þ: ð9Þ

Extension to multilocus mapping

The above method only uses flanking-marker haplotypes to

infer IBD probability, which also can be adapted for

multilocus analysis where a set of markers surrounding the

putative QTL are utilized. The differences between them

mainly exist in the inference of IBD probability and

the reconstruction of the ancestral haplotype. The IBD

inference in multilocus analysis is also similar to that in

Meuwissen and Goddard (2001), which also requires some

modifications in f(c) and a, and both are the same as those

in two-locus analysis (see ‘‘Appendix 1’’). The ancestral

haplotype also can be reconstructed by trying all possible

haplotypes, which is similar to two-locus analysis. How-

ever, with the number of marker increase, the number of

possible ancestral haplotypes will also exponentially

increase, so that the program will be quickly forbidden.

Therefore, a fast stepwise method, which is suitable for

large number of markers, is developed here to solve the

problem. The steps of the stepwise method are presented

below:

Step 1 Initializing the ancestral haplotype. Scan QTL

from the first marker interval to the last marker interval at

the middle point using only two-locus EMF analysis to

obtain the ancestral haplotype for each adjacent marker

pair. Then the primitive ancestral haplotype for all

markers can be generated by jointing each pair of

haplotypes.

Step 2 Stepwise updating ancestral haplotype for each

adjacent marker pair using multilocus information.

Repeating two-locus analysis from the first marker interval

to the last interval by trying all possible flanking-marker

haplotypes, the IBD probability is inferred through the

current multilocus haplotype rather than flanking-marker

haplotype. When one marker interval is tested, the ances-

tral haplotype is updated at flanking markers, but unchan-

ged for other loci. When QTL is scanned from the first

marker to the last marker, the flanking-marker haplotype is

updated pair by pair continuously until the last flanking-

marker haplotype. In the end, the ancestral for all markers

is also updated in this step.

Step 3 Repeat Step 2 until the ancestral haplotype for all

markers is unchanged.
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Testing the method

The study investigated a 2-cM region with 21 markers

evenly spaced on the small region. One QTL was simulated

at position 1.05 cM. The present population was built on a

base population created 200 generations ago (T = 200)

with effective population size Ne = 200 and sex ratio 1:1.

No pedigree was recorded for this historical population.

The frequencies of two alleles of each SNP marker in base

population were both 0.5, and the marker alleles were

mutated at a rate of 4 9 10-4/generation. The QTL allele

for each individual haplotype in base population was

assigned a unique number. The QTL and marker alleles

were transmitted to descendants according to Haldane’s

recombination rule. In the last generation, one of the QTL

alleles that still existed with frequency (p) [0.1 and \0.9

was randomly sampled as being mutant allele and assigned

effect b, while others were assumed to be the wild type and

assigned effect 0. Then the QTL allele effect was deter-

mined from r2
q ¼ 2b2pð1� pÞ. The residual effect was

sampled from normal distribution with mean 0 and vari-

ance 0.9; the overall mean was set as zero, and no poly-

genic effect was simulated. The phenotypic value of each

individual was simulated by summing the overall mean,

QTL effect and residual values.

Six methods were compared, which included VC using

20 markers surrounding the putative QTL (VC20), VC

using flanking markers (VC2), EMF using 20 markers

(EMF20), EMF using flanking markers (EMF2), paired-

marker analysis (MARK2) and SMA. In MARK2, four

kinds of flanking-marker haplotypes were treated as fixed

effect and solved with the maximum likelihood estimation.

Results

Computational time

The computational time required for the six methods were

*2,600 s (VC20), *240 s (VC2), *92 s (EMF20),

*22 s (EMF2), *2 s (MARK2), and *1 s (SMA),

respectively. These programs were carried out on Pentium

IV PC with 1.0-GHz processor and 512 MB RAM. The

computational speed of EMF was much faster than that of

VC. It was also found that in EMF20, the ancestral hap-

lotype became unchanged after 3–7 rounds of iterations.

Effect of the heritability

The QTL variance was taken as 0.05, 0.1 and 0.2, which

led to the QTL heritability equalled to 0.05, 0.1 and 0.18,

respectively. VC20 and VC2 were replicated 200 times and

the threshold was determined with 200 replications under

null model (no QTL model). Other methods were repli-

cated 1,000 times, and the thresholds were determined with

1,000 replications under null model. The (1 – a) 100th

percentile of the distribution of the largest LR scores for the

null model was an approximation of the threshold, where a
was taken as 0.01.

The average LR scores are plotted in Fig. 1, which

shows that all methods generate a peak at the true position.

The statistical power and parameter estimates for each

method under three heritabilities are listed in Table 1.

It can be seen that the power of each method can be

approximately ranked as VC20 & EMF20 [ VC2 &
EMF2 & MARK2 [ SMA; furthermore, the power of

each method was decreased with heritability. The position

estimates and their standard deviations for each method are

summarized in Table 1. Generally, all methods estimated

QTL position very close to the true value, but SMA showed

the largest standard deviation; furthermore, the standard

deviation of QTL position for each method was also

increased with heritability. The true rates of the estimates

of ancestral haplotype from EMF2 under the three herita-

bilities were 80.5, 79.17 and 75.17 %, respectively, which

showed no great difference among them.

Effect of mutation generation T

Although the data was simulated under T = 200, in practice,

T was unknown and usually set beforehand (Meuwissen and

Goddard 2000, 2001; Lee and van der Werf 2006). To test

the effect of T, QTL variance was fixed at 0.18 and T was

taken as 10, 100, 200, 400, 600, 800 and 1,000, respectively;

and the thresholds were 13.23, 13.37, 11.69, 11.30, 13.19,

12.16 and 11.5, which were obtained from 1,000 replicated

experiments under null model. EMF2 was replicated 1,000

times and the power were 94.6, 94.3, 95, 94, 76.8, 77.4 and

74.2 %, respectively, which shows that when T was varied

from 10 to 400 (around the true value 200), the power

showed no clear difference, but when T was larger than 400

(severely deviated from true value) the difference would be

large.

Performance on multallelic QTL

One multiallelic QTL with each allele mutated at different

generations was simulated. The effects of these alleles were

assumed to be normally distributed with mean 0 and var-

iance 0.2 (see ‘‘Appendix 3’’ for simulation details). The

VC2, EMF2 and SMA were compared and the powers of

them were 58.3, 51.4 and 43.2 %, respectively, which

shows that the power of EMF2 was lower than that of VC2,

but both of them were higher than that of SMA.
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Discussion

A fast EMF was developed for fine-scale QTL mapping.

Generally, EMF performed very similar to VC in statistical

power and parameter estimate, and both of them outper-

formed MARK2 and SMA.

The method calculating IBD probability in EMF is the

modification of Meuwissen and Goddard’s method (2001),

but there are two main differences. One is that aj refers to

the probability of the IBS between two individual haplo-

types at marker j (i.e. the homozygosity of marker j) in

Meuwissen and Goddard (2001), whereas it indicates the

probability that an individual haplotype is IBS but nonIBD

to the ancestral haplotype at marker j in EMF. If two

haplotypes that are IBS at marker j carry marker allele k;

then aj ¼ q2
k in Meuwissen and Goddard (where qk is the

frequency of kth allele of the marker in the base popula-

tion), whereas aj ¼ qk in EMF. As pointed out by

Meuwissen and Goddard (2001), qk can be estimated with

present population. Similar method can be adopted to

obtain qk in EMF, but it was found that both VC and EMF

were not very sensitive to qk (results not shown). The other

difference is that EMF introduces a new parameter a in

calculation of f(c) (see Eq. 11), which reflects the fre-

quency of the QTL-mutation allele in the present popula-

tion. Theoretically, a should be estimated with its

expectation, EðaÞ ¼ 1=ð2NeÞ, but it did not give any

meaningful results. In fact, the variance of a is very large
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Fig. 1 The profiles of the

average LR scores of the six

methods under three

heritabilities 0.18 (black line),

0.1 (dark grey line) and 0.05

(light grey line), respectively.

The true position is localized at

1.05 cM
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due to genetic drift, and thus a usually severely deviates

from E(a). In this study, a was set as a large number 0.9

and it performed well. a was also varied from 0.5 to 1.0,

but the results showed slight difference, which suggested

that EMF was not very sensitive to a.

Both VC and EMF introduce a parameter T, the genera-

tions since mutation occurred, which is unknown and usually

set beforehand. Fortunately, it was found that EMF was not

very sensitive to T when T was not severely deviated from true

value, which is similar to VC (e.g. Meuwissen and Goddard

2000; Lee and van der Werf 2006).

The EMF modifies Meuwissen and Goddard’s method

(2001) to infer IBD probability between the individual and

ancestral haplotype. Some other methods that infer LD-based

IBD matrix between individuals has been studied by many

researchers (Hernández-Sánchez et al. 2006; Meuwissen and

Goddard 2007; Hill and Hernández-Sánchez 2007). These

methods are specifically designed for VC, but with some

modifications, they may be suitable for EMF, which are left

for further investigation.

This study focuses on unrelated individuals randomly

sampled from a population. If a pedigree structure is avail-

able, the LA information could also be incorporated along

with the LD information. The method that combines LD and

LA information is called LDLA. The extension of EMF to

LDLA is straightforward, which is described in Appendix 2.

The extension still treats QTL effect as fixed effect, and thus

the computational advantage of EMF will be held.

In this study, QTL parameters were estimated with the

maximum likelihood implemented via EM algorithm,

which requires a number of iterations for updating each

parameter with calculation of the posterior probabilities

P�i0, P�i1and P�i2. Those would costs much CPU time.

Another method that approximately substitutes P�i0, P�i1and

P�i2 with their prior probabilities Pi0, Pi1 and Pi2 (e.g. Haley

and Knott 1992) can avoid the iterative manipulation, and

thus would be much faster than EMF.

The EMF assumes a biallelic QTL and it performed well

when the assumption is true; however, when QTL was mul-

tiallelic the QTL-detection power of EMF would be lower

than that of VC. In fact, the EMF could also be modified to

accommodate multiple QTL-mutation alleles. In that case,

several possible ancestral haplotypes that generate higher LR

scores should be chosen and the effects of the mutation alleles

carried on these ancestral haplotypes are simultaneously

included in model, which are not very difficult to implement.
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Appendix 1: Derivation of the probability

of an individual haplotype being IBD to the ancestral

haplotype at the putative QTL loci

Equation (2) can be written as,

pðSj; Sjþ1 IBDj ÞpðIBDÞ ¼ pðSj; IBD; Sjþ1Þ
¼
X

pð/Þ�pðS /j Þ
: ð10Þ

Table 1 The parameter

estimates under three

heritabilities

The standard deviations of the

parameter estimates from

replications are given in

parenthesis

Heritability Methods Position (cM) QTL variance Residual

variance

Power

(%)

Threshold

value

0.18 VC20 1.05 (0.284) 0.181 (0.042) 0.908 (0.094) 98.3 15.83

VC2 1.08 (0.314) 0.182 (0.057) 0.941 (0.106) 94.3 14.48

EMF20 1.06 (0.245) 0.185 (0.068) 0.904 (0.269) 98.9 13.85

EMF2 1.06 (0.308) 0.166 (0.066) 0.994 (0.207) 95.1 13.51

MARK2 1.05 (0.326) – 1.050 (0.118) 94.4 16.77

SMA 1.09 (0.376) – 1.071 (0.115) 84.6 11.56

0.1 VC20 1.07 (0.340) 0.135 (0.038) 0.888 (0.092) 71.3 15.83

VC2 1.04 (0.336) 0.142 (0.037) 0.876 (0.098) 68.3 14.48

EMF20 1.03 (0.314) 0.121 (0.039) 0.837 (0.225) 70.1 13.85

EMF2 1.06 (0.344) 0.116 (0.046) 0.935 (0.174) 67.4 13.68

MARK2 1.07 (0.329) – 0.976 (0.092) 67.2 16.77

SMA 1.10 (0.396) – 0.980 (0.095) 57.6 11.56

0.05 VC20 1.03 (0.354) 0.110 (0.041) 0.865 (0.090) 30.3 15.83

VC2 1.05 (0.389) 0.107 (0.024) 0.872 (0.074) 28.6 14.48

EMF20 1.03 (0.362) 0.109 (0.116) 0.941 (0.116) 29.3 13.85

EMF2 1.08 (0.361) 0.096 (0.035) 0.912 (0.141) 28.4 13.68

MARK2 1.01 (0.360) – 0.934 (0.086) 28.5 16.77

SMA 1.08 (0.459) – 0.953 (0.089) 28.2 11.56
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The second term in Eq. (10) can be factorized as,

pðSj/Þ ¼
Qjþ1

markerloci j

pðSðjÞj/ðjÞÞ, where / is the IBD status

of a segment including QTL locus, flanking markers

(marker j and j ? 1) and the regions in between them;

pðSðjÞ /ðjÞj Þ is the probability of the IBS between

individual and ancestral haplotype at marker j conditional

on the IBD status of marker j. The calculation of pðS /j Þ for

four IBS statuses of flanking markers ðSj; Sjþ1Þ, (1, 1), (1, 0),

(0, 1) and (0, 0) can be easily obtained from aj and aj?1, where

aj(aj?1) denotes the probabilities of the IBS but not the

nonIBD between the individual and ancestral haplotype at

marker j(j ? 1) (see Meuwissen and Goddard 2001).

Assuming the frequency of each marker allele to be equal

in base population, ajcan be estimated as 1/(Number of alleles

of jth marker). However, this assumption can be relaxed,

which will be illustrated in ‘‘Discussion’’.

The first term in Eq. (10), p(/) is the probability of the

IBD status of the segment including QTL locus, flanking

markers (markers j and markers j ? 1) and the regions in

between them, which is derived from f(c) (see Meuwissen

and Goddard 2001). f(c) is the probability of having an IBD

region of size c between two individual haplotypes in

Meuwissen and Goddard (2001), but it refers to the prob-

ability of having an IBD region of size c between an

individual haplotype and the ancestral haplotype in EMF,

and thus can be expressed as

fðcÞ ¼ expð�cÞTa; ð11Þ

where the first term is the probability that the segment of

size c is unbroken for T generations of meiosis; and the

second term a is the probability that the intact IBD segment

is inherited from the ancestral haplotype carrying the

mutant QTL allele. a equals to NM/N, where NM is the

number of current haplotypes containing the mutation M,

and N is the total number of haplotypes. But because NM is

unknown, a also cannot be obtained; therefore, in practice,

a should be set beforehand, and the effect of a will be

discussed later. The calculation of p(/) with f(c) has been

explained at length in Meuwissen and Goddard (2001), and

thus they are not presented here. Once p(/) and pðS /j Þ

have been calculated, Eq. (10) can be obtained by summing

all possible terms relevant to / that is IBD at QTL (see also

Table III of Meuwissen and Goddard 2001 for more

details).

The second term in the denominator of Eq. (2) also can

be calculated using similar approach, and it can be fac-

torized as

pðSj; Sjþ1 nonIBDj ÞpðnonIBDÞ ¼ pðSj; nonIBD; Sjþ1Þ
¼
X

pð/Þ � pðSj/Þ:
ð12Þ

which is calculated by summing all possible terms relevant

to / that is nonIBD at QTL (see Table III in Meuwissen

and Goddard 2001). For clarification, all notations involved

in this section are listed in Table 2.

Appendix 2: Extension to the combination of the linkage

disequilibrium and linkage analysis

A pedigree with two generations was taken as an example to

illustrate the approach to incorporate the linkage informa-

tion, but the approach can be extended to other more

complex pedigrees. Given the linkage phases of the unre-

lated founders and their offspring, the probabilities that

offspring i carries two father’s QTL alleles AP
1 and AP

2 and

two mother’s QTL alleles AM
1 and AM

2 , ProbðAP
1Þ and

ProbðAP
2Þ, and ProbðAM

1 Þ and ProbðAM
2 Þ, respectively, can

be easily inferred from flanking markers according to Hal-

dane’s recombination rule (e.g., using the method of Wang

et al. 1995). Given the probability that two QTL alleles

(indicated by 1 and 2, respectively) of the father (iP) and

mother (iM) of offspring i is IBD to the ancestral mutation

allele, denoted by p1
iP

and p2
iP

(for father), p1
iM

and p2
iM

(for

mother), the probabilities of three QTL genotypes com-

bining LD and LA information can be calculated as, Pi1 ¼
ðProbðAP

1Þp1
iP
þ ProbðAP

2Þp2
iP
Þ � ðProbðAM

1 Þ þ ProbðAM
2 Þp2

iM
Þ

for genotype MM, Pi3 ¼ ðProbðAP
1Þð1� pP

iP
Þ þ ProbðAP

2Þ
ð1� pM

iP
ÞÞ � ðProbðAM

1 Þð1� pP
iM
Þ þ ProbðAM

2 Þð1� pM
iM
ÞÞ for

mm, and Pi2 ¼ 1� Pi1 � Pi3 for Mm or mM, respectively,

Table 2 List of the notation symbols

Sj The identity-by-state (IBS) status between an individual haplotype and the ancestral haplotype at marker j Sj = 1 (Sj = 0) indicates

(non)IBS of marker j

pðIBDÞ The prior probability of a QTL allele being IBD to the mutational QTL allele M

/ The IBD status of a segment including QTL locus, flanking markers and the regions in between them

/(j) The IBD status at marker j

aj The probability that an individual haplotype is IBS but nonIBD to the ancestral haplotype at marker j

fðcÞ The probability of having an IBD region of size c between individual and ancestral haplotype

a The probability that an intact IBD segment is inherited from the ancestral haplotype carrying the mutational QTL allele
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which assumes the QTL loci is in Hardy–Weinberg

equilibrium.

Appendix 3: Simulation of multiple QTL mutations

A chromosome segment with length of 2 cM was simu-

lated. Twelve markers were evenly spaced on the segment

and one QTL was localized at 1.05 cM. The population

was created 500 generations ago, the effective population

size (Ne) was 200, and sex ratio was 1:1. In the base

population, two alleles were assigned to each marker with

equal frequency, and only one allele was assigned to QTL.

The marker alleles were mutated at a rate of 4 9 10-4/

generation. A new QTL mutation occurred every two

generations. One individual haplotype was randomly cho-

sen, and the QTL allele on the haplotype was mutated to a

new QTL allele and assigned a new number. The high

mutation rate of QTL might result in about 6–12 alleles in

the present population. The effects of each QTL allele were

randomly sampled from standard normal distribution N(0, 1).

At the last generation, the effect of each QTL allele was

rescaled so that the mean of QTL effect was zero and the

variance was 0.2. The residual effect was sampled from

normal distribution with mean 0 and variance 0.9; the overall

mean was set as zero, and no polygenic effect was simulated.

With these settings, the heritability explained by QTL was

0.18. The phenotypic value for each individual then was

generated by summing the overall mean, QTL effect and

residual error.
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